Расстояние от дизельного генератора до здания нормы

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Расстояние от дизельного генератора до здания нормы». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


Установлены следующие уровни взрывозащиты электрооборудования: «электрооборудование повышенной надежности против взрыва», «взрывобезопасное электрооборудование» и «особовзрывобезопасное электрооборудование».

При определении взрывоопасных зон принимается, что

а) взрывоопасная зона в помещении занимает весь объем помещения, если объем взрывоопасной смеси превышает 5% свободного объема помещения;

б) взрывоопасной считается зона в помещении в пределах до 5 м по горизонтали и вертикали от технологического аппарата, из которого возможно выделение горючих газов или паров ЛВЖ, если объем взрывоопасной смеси равен или менее 5% свободного объема помещения (см. также 7.3.42, п. 2). Помещение за пределами взрывоопасной зоны следует считать невзрывоопасным, если нет других факторов, создающих в нем взрывоопасность;

в) взрывоопасная зона наружных взрывоопасных установок ограничена размерами, определяемыми в 7.3.44.

Примечания: 1. Объемы взрывоопасных газо- и паровоздушной смесей, а также время образования паровоздущной смеси определяются в соответствии с «Указаниями по определению категории производств по взрывной, взрывопожарной и пожарной опасности», утвержденными в установленном порядке.

2. В помещениях с производствами категорий А, Б и Е электрооборудование должно удовлетворять требованиям гл. 7.3 к электроустановкам во взрывоопасных зонах соответствующих классов.

Расстояние от дизельного генератора до здания нормы

Посмотрите СП 4 и статью в сетевом журнале «Актуальные вопросы пожарной безопасности» 2020, №1.

открыл статью в сетевом журнале «Актуальные вопросы пожарной безопасности» 2020, №1, название «ПОЖАРНАЯ БЕЗОПАСНОСТЬ
ЭЛЕКТРОГЕНЕРАТОРНЫХ УСТАНОВОК»

Вот что в этой статье про противопожарные расстояния от ДГУ:

ЭГУ, расположенные вне зданий (наружные сооружения), должны находиться на расстоянии от зданий категорий А и Б по взрывопожарной опасности
не менее 8 м – при отсутствии проемов в стене здания или не менее 12 м – до
стены с проемами [2].

Расстояние от стены здания пристроенной ЭГУ до ближайшего проема
по горизонтали должно быть не менее 4 м, а от покрытия ЭГУ до ближайшего
проема по вертикали – не менее 8 м.

Расстояние от пристроенных и отдельно стоящих электрогенераторных
помещений (в том числе блочных) до соседних зданий и сооружений определяется по п. 4.13 и табл. 2 [2].

Расходные баки в помещениях с ЭГУ следует рассматривать как технологический аппарат. Это значит, что на них не распространяются требования
к складам нефти и нефтепродуктов. Расходные баки должны иметь дыхательную систему, исключающую попадание паров топлива в помещение ЭГУ и обе-спечивающую выпуск паров топлива через незамерзающую арматуру с огнепреградителем в атмосферу, на расстоянии не менее 5 м от стены здания;
оборудованы переливным трубопроводом, указателем уровня [5].

Аварийные емкости должны представлять собой закрытые аппараты, обеспеченные дыхательными трубами с огнепреградителями. Аварийные емкости
должны располагаться вне габаритов здания на уровне земли или под землей.
При подземном расположении емкость может размещаться на расстоянии 1 м
от глухой стены производственного здания и не менее 4–5 м от стены с проемами [2, 6].

Расстояние от наружного топливохранилища полузаглубленного типа до
ЭГУ принимается не менее 8 м.

При расчете производительности общеобменной вентиляции с ЭГУ следует учитывать расход воздуха для горения топлива. При наружном размещении
ЭГУ расстояние между площадкой с ЭГУ и другими объектами должно составлять при наличии оконных и дверных проемов в стене, обращенной к площадке
с ЭГУ, – не менее 15 м, при глухой стене – не менее 8 м. Допускается размещать площадку с ЭГУ непосредственно у стены здания, если стена здания
является противопожарной 1-го типа.

Я так понимаю, что нас интересует это: «При наружном размещении
ЭГУ расстояние между площадкой с ЭГУ и другими объектами должно составлять при наличии оконных и дверных проемов в стене, обращенной к площадке
с ЭГУ, – не менее 15 м, при глухой стене – не менее 8 м. Допускается размещать площадку с ЭГУ непосредственно у стены здания, если стена здания
является противопожарной 1-го типа.»?

Область применения, определения

4.2.1. Настоящая глава Правил распространяется на стационарные распределительные устройства (РУ) и трансформаторные подстанции (ПС) переменного тока напряжением выше 1 кВ.

4.2.2. Настоящая глава не содержит требований по устройству РУ и ПС в части:

  • выбора площадки (кроме 4.2.35);
  • инженерной подготовки территории;
  • мероприятий по снижению шума, создаваемого работающим электрооборудованием;
  • определения категории взрывопожарной и пожарной опасности помещений;
  • определения степени огнестойкости зданий (кроме 4.2.117, 4.2.118);
  • охранных мероприятий;
  • противопожарной защиты и пожарной безопасности (кроме некоторых пунктов).

Биологическая защита от воздействия электрических и магнитных полей

4.2.72. На ПС и в ОРУ 330 кВ и выше в зонах пребывания обслуживающего персонала (пути передвижения обслуживающего персонала, рабочие места) напряженность электрического поля (ЭП) должна быть в пределах допустимых уровней, установленных государственными стандартами.

4.2.73. На ПС и в РУ напряжением 1-20 кВ в зонах пребывания обслуживающего персонала напряженность магнитного поля (МП) должна соответствовать требованиям санитарных правил и норм.

4.2.74. В ОРУ 330 кВ и выше допустимые уровни напряженности ЭП в зонах пребывания обслуживающего персонала должны обеспечиваться, как правило, конструктивно-компоновочными решениями с использованием стационарных и инвентарных экранирующих устройств. Напряженность ЭП в этих зонах следует определять по результатам измерений в ОРУ с идентичными конструктивно-компоновочными решениями или расчетным путем.

4.2.75. На ПС и в ОРУ напряжением 330 кВ и выше в целях снижения воздействия ЭП на персонал необходимо:

  • применять металлоконструкции ОРУ из оцинкованных, алюминированных или алюминиевых элементов;
  • лестницы для подъема на траверсы металлических порталов располагать, как правило, внутри их стоек (лестницы, размещенные снаружи, должны быть огорожены экранирующими устройствами, обеспечивающими внутри допустимые уровни напряженности ЭП).

Противопожарные расстояния между дизельными электростанциями контейнерного типа

Планируем расположить три контейнера ДЭС на площадке..какие противопожарные расстояния между ними должны быть

Заводом предусмотрено в контейнерах газовое пожаротушение, степень огнестойкости IV, категория В.
По СП 4.13130.2013 9 метров, но с учетом автоматического газового пожаротушения можно уменьшить до 6.
Учитывая плотность застройки хотелось бы эту группу контейнеров ближе поставить, уменьшив расстояния между ними. до какой степени можно уменьшить противопожарные расстояния между контейнерами?

В соответствии с п.5.1.5 СП 4.13130.2013 «Системы противопожарной защиты. Ограничение распространения пожара на объектах защиты. Требования к объемно-планировочным и конструктивным решениям» (ред. от 18.07.2013) противопожарные требования к размещению зданий, помещений и сооружений генераторных должны соответствовать требованиям, предъявляемым для котельных, работающих на соответствующем топливе.

В соответствии с п.6.9.2. СП 4.13130.2013 отдельно стоящие здания котельных по степени огнестойкости, классу конструктивной пожарной опасности, высоте зданий и площади этажа в пределах пожарного отсека принимаются в соответствии с требованиями для зданий производственного назначения.

Здания отдельно стоящих, пристроенных и встроенных котельных выполняются I и II степени огнестойкости класса пожарной опасности С0; III степени огнестойкости классов пожарной опасности С0 и С1.

Здания отдельно стоящих котельных, относящихся ко второй категории по надежности отпуска тепла потребителям, могут также выполняться IV степени огнестойкости класса пожарной опасности С0, С1.

Соответственно, мобильные (инвентарные) сооружения контейнерного типа дизельных электростанций (дизельных электрогенераторов) могут выполняться IV степени огнестойкости, класса конструктивной пожарной опасности С0, С1.

Мобильное (инвентарное) здание или сооружение — здание или сооружение комплектной заводской поставки, конструкция которого обеспечивает возможность его передислокации (п.1 таблицы 2 ГОСТ 25957-83 «Здания и сооружения мобильные (инвентарные). Классификация, термины и определения»).

Мобильное (инвентарное) здание или сооружение контейнерного типа — мобильное (инвентарное) здание или сооружение, состоящее из одного блок-контейнера полной заводской готовности, передислоцируемое на любых пригодных транспортных средствах, в том числе на собственной ходовой части (п.3 таблицы 2 ГОСТ 25957-83 «Здания и сооружения мобильные (инвентарные). Классификация, термины и определения»).

В соответствии с п.6.1.3 СП 4.13130.2013 расстояние между производственными зданиями не нормируется:

Читайте также:  Возврат НДС в 2021 году: для физических и юридических лиц

а) если сумма площадей полов двух и более зданий III и IV степени огнестойкости классов C1, C2 и С3 не превышает площадь полов, допускаемую между противопожарными стенами, считая по наиболее пожароопасной категории, низшей степени огнестойкости и низшего класса конструктивной пожарной опасности здания;

б) если стена более высокого или широкого здания или сооружения, выходящая в сторону другого здания, является противопожарной 1-го типа.

Соответственно, существует два варианта, при которых противопожарные расстояния между тремя мобильными (инвентарными) сооружениями контейнерного типа дизельных электростанций (дизельных электрогенераторов) не будут нормироваться:

Мобильные (инвентарные) сооружения контейнерного типа дизельных электростанций (дизельных электрогенераторов) являются сооружениями IV степени огнестойкости, класса пожарной опасности С1, категорий «В» по взрывопожарной и пожарной опасности и общая площадь трех сооружений не превышает допустимую площадь пожарного отсека для производственного сооружения IV степени огнестойкости, класса конструктивной пожарной опасности С1, категорий «В», согласно п.6.1.1, таблицы 6.1 СП 2.13130.2012 «Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты» (ред. от 23.10.2013).

В соответствии с п.6.1.1, таблицей 6.1 СП 2.13130.2012 для одноэтажных сооружений категории «В», высотой до 18 м площадью этажа в пределах пожарного отсека не более 25000 кв.м. допускается принимать степень огнестойкости IV и класс конструктивной пожарной опасности С1.

Соответственно, если сумма площадей полов 3 (трех) мобильных (инвентарных) сооружений контейнерного типа дизельных электростанций (дизельных электрогенераторов) IV степени огнестойкости, класса пожарной опасности С1, категории «В» не превышает 25000 м(2), то расстояние между данными сооружениями не нормируется.

Мобильные (инвентарные) сооружения контейнерного типа дизельных электростанций (дизельных электрогенераторов) необходимо разделить между собой противопожарными стенами 1-го типа (REI 150).

Требования к устройству противопожарных стен 1-го типа установлены разделом 5.4 СП 2.13130.2012 «Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты» (ред. от 23.10.2013).

На каком расстоянии должна быть трансформаторная подстанция от моего дома?

Трансформаторная подстанция у моего частного дома от ограды ТП до моего угла дома 7,5 м. А, до окна чуть более. Тут пишут, что на 10-15 м должен быть. Вопрос. Почему так расплывчато расстояние? Он у нас открытого типа. Может потому и разные цифры. Где мне найти точную цифру, чтобы им вытереть нос? А ЛЭП шести тысячный подходит к ТП и расстояние такое же. Он зимой гудит. Так как нагрузка больше и слышно гул в доме. Летом не так сильно, но, во дворе гул постоянный. Где найти точную цифру? На фото тот самый гордый, трижды горевший ТП. Видно зелёный забор моего дома. Как быть? Если дети и внуки и мы взрослые ходим по двору. То оказываемся на малом совсем расстоянии от ЛЭП. Это учитывается или нет? Почему считают до окна дома. И, по чему не учитывают двор в котором мы не посредственно бываем?

Расстояние от дизельной установки до здания

Дизель генераторная установка является мощным источником тепла и при работе установки может быть значительное повышение температуры в помещении. Что в свою очередь может негативно сказаться на производительности ДГУ.

Поэтому следует еще в момент монтажа ДГУ установить в помещении приточно-вытяжную вентиляцию.

При монтаже вентиляции следует правильно сориентировать потоки воздуха. Воздух должен поступать со стороны генератора проходить вдоль двигателя и системы радиатора и выходить за пределы помещения, через воздуховод.

Воздушные отверстия для обеспечения нормальной циркуляции воздуха должны быть достаточного размера и на отверстиях должны быть установлены подвижные жалюзи.

Расположение ДГУ в помещении:

  1. Впускное воздушное отверстие;
  2. Выпускное воздушное отверстие;

Лучше всего расположить дизельную электростанцию в отдельном здании, созданном специально для этой цели. В таком случае будет проще учесть все нормативные требования. Однако способ этот затратный: постройка и оборудование нового здания требует вложений.

Разместить дизель-генератор можно и в уже существующем техническом помещении: подвале, пристройке, мансарде. Конечно, предварительно проверив, соответствует ли оно нормам. Скорее всего, потребуется модификация: создание дополнительных вентиляционных проемов, расширение воздушных трактов, усиление противопожарной безопасности.

Выдержка из правил

Высота машинного зала, в котором планируется установка агрегата, должна составлять не менее 3,6 м.

Минимальные расстояния от стен:

  • до переднего торца агрегата мощностью до 500 кВт — 1м, свыше 500 кВт — 2 м;
  • до заднего торца агрегата — 1,2 м;
  • до обслуживаемой стороны агрегата — 1,5 м;
  • до необслуживаемой стороны агрегата — 1м.

Не важно, установите ли вы ДГУ в новое здание или доработаете существующее. Учтите, что в комнате для электрогенератора всегда:

  • Температура не опускается ниже + 5°C
  • Предусмотрено освещение
  • Достаточно места вокруг и над электростанцией
  • Входной проем превышает габариты оборудования на 400 мм
  • Приняты меры по снижению уровня шума

Преимуществом станет расположение дизельной установки вблизи электрощита. Такая дислокация гарантирует минимальную длину кабелей. А вот от чего стоит расположить электростанцию подальше, так это жилые и общественные здания, склады горючих материалов и легковоспламеняющихся жидкостей. Это необходимо, чтобы не подвергать материалы и людей экологической и пожарной опасности.

Помещение должно быть отапливаемым. Температура внутри помещения не должна опускаться ниже +5 °С.

В помещении должны быть обеспечены меры противопожарной безопасности, электробезопасности и меры по соблюдению санитарных норм.

При проектировании отопления и вентиляции должны электротехнический помещений должны быть соблюдены требования соответствующих глав ПУЭ (Глава 6).

Проектирование систем отопления, вентиляции и кондиционирования воздуха в помещениях дизельных электростанций следует выполнять в соответствии с СНиП 41-01-2003, а также с учетом технологических требований предприятия-изготовителя дизельных генераторов. Вентиляцию помещений расходных баков топлива и масла следует предусматривать по СНиП 2.11.03-93.

Помещение для дизель-генераторной установки должно иметь проёмы в наружных стенах для притока наружного воздуха и для отвода горячего. Проёмы должны быть защищены от дождя и снега (козырьки, жалюзи).

Входное и выходное вентиляционные окна не должны располагаться в непосредственной близости друг от друга. Но если нет возможности сделать проем для входного вентиляционного окна со стороны генератора. Отвод горячего воздуха от генератора за пределы помещения следует оградить коробом.

———

Площадь проёма для удаления воздуха соответствует площади решетки радиатора дизельного генератора. Площадь проёма для притока должна быть в 2 раза больше площади решетки радиатора.

———

При недостаточной вентиляции температура в помещении будет расти, что повлечет за собой потерю мощности двигателя вплоть до полной остановки ДГУ, поэтому в некоторых случаях необходимо предусмотреть дополнительную вентиляцию.

Если ДГУ будет эксплуатироваться в условиях Крайнего Севера или в зимнее время, то следует предусмотреть рециркуляционные жалюзи на выпускном коробе радиатора (для поддержания температуры +20°С в помещении или контейнере).

При проектировании или выборе помещения для установки ДГУ следует учитывать уровень шума, который вырабатывает дизель-генератор.

Согласно ГОСТ 12.1.003-83 Система стандартов безопасности труда (ССБТ). Шум. Общие требования безопасности допустимая норма уровня шума работающей электростанции в контейнере – не более 85 дБА.

Общий уровень шума при работе дизельного генератора создает механический шум и вибрации самой станции, шум от выхлопной системы дизельного двигателя и шум от работы систем охлаждения и воздухоотведения.

Выхлопная труба соединяется с глушителем дизель генератора. Положение глушителя может быть причиной пульсаций газа и следом всего трубопровода, что приводит к появлению дополнительного шума. Глушитель выхлопа обычно устанавливается на ровном участке выхлопного трубопровода. Когда это возможно, то глушитель устанавливается вне помещения. В особых случаях (в госпиталях, в жилой зоне и т.д.), когда требуется минимум шума, могут применяться как специальные глушители, так и специальные поглощающие комнаты.

Помимо поглощения звука, внутренние перегородки помещения и толщина стен могут выступать звукоизоляционными свойствами. В этом случае основную роль играет толщина стен.

——————————————-

Уровень звукового давления, производимого ДГУ в открытом исполнении, составляет 100-108 дБ (А) на расстоянии 1м. Ниже приведена степень эффективности различных способов снижения уровня шума:

  • Бетонные стены 30-45 дБ (А)
  • Звукоуловители на вентиляционных отверстиях 30-50 дБ (А)
  • Дверь со звукоизоляционным покрытием 15-43 дБ (А)
  • Глушитель системы выпуска отработавших газов 9-35 дБ (А)
  • Звукоизолирующий кожух 20 дБ (А)
  • Звукоизоляция стен помещения 10 дБ (А)

Удаление от источника шума: на практике снижение уровня шума составляет 3 дБ (А) при удвоении расстояния (Пример: 85 дБ (А) на расстоянии 1 м — 79 дБ (А) на расстоянии 4 м).

Читайте также:  Нижегородские власти существенно расширят меры поддержки ветеранов в 2023 году

Закрытое исполнение сильно упрощает подготовку рабочего пространства для электростанции.

Специальных требований для установки контейнера с ДГУ нет. Главное условие для установки — жалюзийные решетки агрегата должны располагаться на расстоянии не менее 1,5 м от ближайших построек или прочего оборудования.

Первое, что следует сделать — это выбрать место расположения будущей электростанции. Рекомендуется это делать еще до того, как будет приобретен сам дизель-генератор, чтобы при необходимости выбрать наиболее подходящий по местным условиям вариант. Есть несколько вариантов установки дизельного генератора — в специальном шумозащитном кожухе, на открытой раме или в контейнере, имеющем защиту от негативных факторов окружающей среды.

Последний вариант наиболее простой, так как наличие специального контейнера освобождает от необходимости установки дизель-генератора в здании – его можно установить на улице в безопасном месте. При приобретении генератора в защищенном контейнере требуется наличие только лишь фундаментной основы. При выборе места монтажа важно учитывать местные условия. Например, в загородном доме или на даче дизель генератор лучше разместить в помещении, чтобы избежать его воровства.

В случае приобретения модели в шумоизолирующем кожухе или на открытой раме нужно предусмотреть его размещение в помещении (к примеру, в гараже или сарае), которое должно соответствовать следующим требованиям:

  • наличие достаточной защиты от негативных факторов окружающей среды;
  • организация эффективной вентиляции;
  • обеспечение достаточного уровня освещенности;
  • возможность беспрепятственного доступа ко всем элементам дизельного генератора для проведения работ по его обслуживанию и ремонту;
  • наличие дверного проема достаточного размера на случай необходимости монтажа или демонтажа оборудования.

Использование перекидного рубильника

Проще всего выполнить подключение электростанции к домашней сети через рубильник или трехходовой реверсивный переключатель. Разница между аппаратами в том, что рубильник устанавливается отдельно возле щитка, а переключатель можно посадить на DIN рейку, что более удобно.

Итак, для начала просмотрите на схеме, как подключить однофазный генератор к частному дому:

Монтаж через рубильник

Как Вы видите, сверху к рубильнику нужно подсоединить питание от электросети, снизу – кабель от электростанции. Средние контакты предназначены для подключения потребителей электроэнергии. Обращаем Ваше внимание на то, что рубильник либо переключатель должен находиться после счетчика, но перед вводными автоматами, как будет показано на схеме ниже (с АВР).

Что касается технологии подсоединения, она выглядит так:

  1. Отключите электропитание в доме (автоматы на щитке).
  2. Подсоедините провода согласно схеме.
  3. Заведите генератор и подождите, чтобы он несколько минут прогрелся.
  4. Переключите рубильник в положение питания от электростанции (по правилам – нижнее).

Когда на участке возобновят подачу электроэнергии, Вы должны первым делом вернуть переключатель в верхнее положение, после чего уже заглушить генератор.

Выбор способов прокладки

2.3.25. При выборе способов прокладки силовых кабельных линий до 35 кВ необходимо руководствоваться следующим:

1. При прокладке кабелей в земле рекомендуется в одной траншее прокладывать не более шести силовых кабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельных траншеях с расстоянием между группами кабелей не менее 0,5 м или в каналах, туннелях, по эстакадам и в галереях.

2. Прокладка кабелей в туннелях, по эстакадам и в галереях рекомендуется при количестве силовых кабелей, идущих в одном направлении, более 20.

3. Прокладка кабелей в блоках применяется в условиях большой стесненности по трассе, в местах пересечений с железнодорожными путями и проездами, при вероятности разлива металла и т.п.

4. При выборе способов прокладки кабелей по территориям городов должны учитываться первоначальные капитальные затраты и затраты, связанные с производством эксплуатационно-ремонтных работ, а также удобство и экономичность обслуживания сооружений.

2.3.26. На территориях электростанций кабельные линии должны прокладываться в туннелях, коробах, каналах, блоках, по эстакадам и в галереях. Прокладка силовых кабелей в траншеях допускается только к удаленным вспомогательным объектам (склады топлива, мастерские) при количестве не более шести. На территориях электростанций общей мощностью до 25 МВт допускается также прокладка кабелей в траншеях.

2.3.27. На территориях промышленных предприятий кабельные линии должны прокладываться в земле (в траншеях), туннелях, блоках, каналах, по эстакадам, в галереях и по стенам зданий.

2.3.28. На территориях подстанций и распределительных устройств кабельные линии должны прокладываться в туннелях, коробах, каналах, трубах, в земле (в траншеях), наземных железобетонных лотках, по эстакадам и в галереях.

2.3.29. В городах и поселках одиночные кабельные линии следует, как правило, прокладывать в земле (в траншеях) по непроезжей части улиц (под тротуарами), по дворам и техническим полосам в виде газонов.

2.3.30. По улицам и площадям, насыщенным подземными коммуникациями, прокладку кабельных линий в количестве 10 и более в потоке рекомендуется производить в коллекторах и кабельных туннелях. При пересечении улиц и площадей с усовершенствованными покрытиями и с интенсивным движением транспорта кабельные линии должны прокладываться в блоках или трубах.

2.3.31. При сооружении кабельных линий в районах многолетней мерзлоты следует учитывать физические явления, связанные с природой многолетней мерзлоты: пучинистый грунт, морозобойные трещины, оползни и т.п. В зависимости от местных условий кабели могут прокладываться в земле (в траншеях) ниже деятельного слоя, в деятельном слое в сухих, хорошо дренирующих фунтах, в искусственных насыпях из крупноскелетных сухих привозных грунтов, в лотках по поверхности земли, на эстакадах. Рекомендуется совместная прокладка кабелей с трубопроводами теплофикации, водопровода, канализации и т.п. в специальных сооружениях (коллекторах).

2.3.32. Осуществление разных видов прокладок кабелей в районах многолетней мерзлоты должно производиться с учетом следующего:

1. Для прокладки кабелей в земляных траншеях наиболее пригодными фунтами являются дренирующие фунты (скальные, галечные, гравийные, щебенистые и крупнопесчаные); пучинистые и просадочные фунты непригодны для прокладки в них кабельных линий. Прокладку кабелей непосредственно в фунте допускается осуществлять при числе кабелей не более четырех. По грунтово-мерзлотным и климатическим условиям запрещается прокладка кабелей в трубах, проложенных в земле. На пересечениях с другими кабельными линиями, дорогами и подземными коммуникациями кабели следует защищать железобетонными плитами.

Прокладка кабелей вблизи зданий не допускается. Ввод кабелей из траншеи в здание при отсутствии вентилируемого подполья должен выполняться выше нулевой отметки. 2. Прокладку кабелей в каналах допускается применять в местах, где деятельный слой состоит из непучинистых грунтов и имеет ровную поверхность с уклоном не более 0,2%, обеспечивающим сток поверхностных вод. Кабельные каналы следует выполнять из водонепроницаемого железобетона и покрывать снаружи надежной гидроизоляцией. Сверху каналы необходимо закрывать железобетонными плитами. Каналы могут выполняться заглубленными в фунт и без заглубления (поверх грунта). В последнем случае под каналом и вблизи него должна быть выполнена подушка толщиной не менее 0,5 м из сухого грунта.

2.3.33. Внутри зданий кабельные линии можно прокладывать непосредственно по конструкциям зданий (открыто и в коробах или трубах), в каналах, блоках, туннелях, трубах, проложенных в полах и перекрытиях, а также по фундаментам машин, в шахтах, кабельных этажах и двойных полах.

2.3.34. Маслонаполненные кабели могут прокладываться (при любом количестве кабелей) в туннелях и галереях и в земле (в траншеях); способ их прокладки определяется проектом.

Соединения и заделки кабелей

2.3.65. При соединении и оконцевании силовых кабелей следует применять конструкции муфт, соответствующие условиям их работы и окружающей среды. Соединения и заделки на кабельных линиях должны быть выполнены так, чтобы кабели были защищены от проникновения в них влаги и других вреднодействующих веществ из окружающей среды и чтобы соединения и заделки выдерживали испытательные напряжения для кабельной линии и соответствовали требованиям ГОСТ.

2.3.66. Для кабельных линий до 35 кВ концевые и соединительные муфты должны применяться в соответствии с действующей технической документацией на муфты, утвержденной в установленном порядке.

2.3.67. Для соединительных и стопорных муфт кабельных маслонаполненных линий низкого давления необходимо применять только латунные или медные муфты.

Длина секций и места установки стопорных муфт на кабельных маслонаполненных линиях низкого давления определяются с учетом подпитки линий маслом в нормальном и переходных тепловых режимах.

Стопорные и полустопорные муфты на кабельных маслонаполненных линиях должны размещаться в кабельных колодцах; соединительные муфты при прокладке кабелей в земле рекомендуется размещать в камерах, подлежащих последующей засыпке просеянной землей или песком.

Читайте также:  Индексация пенсий в 2023 году: таблица и график социальных выплат пенсионерам

В районах с электрифицированным транспортом (метрополитен, трамваи, железные дороги) или с агрессивными по отношению к металлическим оболочкам и муфтам кабельных линий почвами соединительные муфты должны быть доступны для контроля.

2.3.68. На кабельных линиях, выполняемых кабелями с нормально пропитанной бумажной изоляцией и кабелями, пропитанными нестекающей массой, соединения кабелей должны производиться при помощи стопорно-переходных муфт, если уровень прокладки кабелей с нормально пропитанной изоляцией выше уровня прокладки кабелей, пропитанных нестекающей массой (см. также 2.3.51).

2.3.69. На кабельных линиях выше 1 кВ, выполняемых гибкими кабелями с резиновой изоляцией в резиновом шланге, соединения кабелей должны производиться горячим вулканизированием с покрытием противосыростным лаком.

2.3.70. Число соединительных муфт на 1 км вновь строящихся кабельных линий должно быть не более: для трехжильных кабелей 1–10 кВ сечением до 3 × 95 мм2 — 4 шт.; для трехжильных кабелей 1–10 кВ сечениями 3 × 120 — 3 × 240 мм2 — 5 шт.; для трехфазных кабелей 20–35 кВ — 6 шт.; для одножильных кабелей — 2 шт.

Для кабельных линий 110–220 кВ число соединительных муфт определяется проектом.

Использование маломерных отрезков кабелей для сооружения протяженных кабельных линий не допускается.

Впервые опасное воздействие электромагнитных полей ЛЭП на человеческий организм было обнаружено в 60-х годах прошлого столетия. После тщательных исследований состояния здоровья людей, близко контактирующих с линиями электропередач в условиях производства, учеными были обнаружены настораживающие факты. Практически все обследованные лица жаловались на повышенную утомляемость, раздражительность, нарушения памяти и сна.

Ко всем вышеперечисленным симптомам, возникающим у человека после частого общения с электромагнитными волнами промышленной частоты, можно смело добавить депрессию, мигрень, дезориентацию в пространстве, мышечную слабость, проблемы с сердечнососудистой системой, гипотонию, нарушения зрения, атрофию цветового восприятия, снижение иммунитета, потенции, изменение состава крови и т.д. и т.п. Список можно продолжить еще целым рядом физиологических расстройств и всевозможных заболеваний.

Очень часто у людей, живущих поблизости ЛЭП, наблюдаются онкологические заболевания, серьезные нарушения репродуктивной функции, а также так называемый синдром электромагнитной сверхчувствительности. Довольно страшно слышать отчеты об исследованиях некоторых иностранных ученных на предмет влияния высоковольтных линий электропередач на здоровье наших детей. Например, шведские и датские исследователи обнаружили то, что дети, проживающие на расстоянии до 150 метров от ЛЭП, подстанций и метро (!), в два раза чаще болеют лейкемией, а практически у каждого из них встречаются расстройства нервной системы.

В некоторых странах существует такой медицинский термин, как электромагнитная аллергия. Люди, ею страдающие, имеют возможность поменять место проживания на другое, находящееся как можно дальше от источников электромагнитного излучения. Причем все это официально спонсируется правительством! Как же комментирую энергетики возможную опасность, исходящую от ЛЭП? В первую очередь, они настаивают на том, что напряжение электрического тока в линиях электропередач может быть разным, а поэтому следует различать безопасное и опасное напряжение. Дальность воздействия магнитного поля, создаваемого ЛЭП, прямо пропорциональна мощности самой линии. Профессионал навскидку определяет класс напряжения ЛЭП. Этими знаниями можете обладать и вы. Все довольно просто – надо обращать внимание на количество проводов в связке (не на самой опоре). Итак: 2 провода – 330 кВ 3 провода – 500 кВ 4 провода – 750 кВ Меньший класс напряжения ЛЭП определяется по количеству изоляторов: 3-5 изоляторов – 35 кВ 6-8 изоляторов – 110 кВ 15 изоляторов – 220 кВ.

Для того чтобы защитить население от вредного воздействия линий электропередач, существуют специальные нормативы, определяющие некую санитарную зону, условно начинающуюся от крайнего провода ЛЭП, спроецированного на землю. Итак: Напряжение менее 20 кВ – 10 м, 35 кВ – 15 м, 110 кВ – 20 м, 150-220 кВ – 25 м, 330 – 500 кВ – 30 м, 750 кВ – 40 м. Вышеперечисленные нормы относятся почему-то именно к Москве и Московской области. Естественно, что в соответствии с ними и выделяются и участки под застройку. Самое интересное, что указанные нормативы не учитывают вредного воздействия электромагнитного излучения, а ведь именно оно подчас в десятки, а иногда и в сотни раз опаснее для здоровья!

А теперь ВНИМАНИЕ! Чтобы магнитное поле не оказывало влияние на состояние вашего здоровья, умножьте каждый из перечисленных показателей на 10… Получается, что самая маломощная ЛЭП безвредна лишь на расстоянии в 100 метров! Провода ЛЭП таят в себе напряжение, максимально соприкасающееся с порогом коронного разряда. В условиях непогоды этот разряд сбрасывает в атмосферу облако противоположно заряженных ионов. Электрическое поле, создаваемое ими, даже на большом удалении от ЛЭП может быть гораздо больше допустимых безвредных величин.

Совсем недавно получил “зеленый свет” новый проект московского правительства о переносе некоторых участков высоковольтных линий электропередач под землю. Освободившуюся площадь мэрия планирует пустить под застройку. Вот тут то и возникает закономерный вопрос – а так ли будут безопасны подземные ЛЭП для проживающих над ними людей? Станут ли застройщики вызывать специалистов-энергетиков на местность, планируемую под строительство жилья? Электромагнитное излучение подземных ЛЭП и его воздействие на человеческий организм, к сожалению, еще малоизученно…

Первыми в подземелье уйдут линии электропередач, расположенные в районах – Ленинский проспект, проспект Мира и Щелковское шоссе. Далее планируется убрать под землю ЛЭП Северо-Восточного административного округа, а именно в Северном и Южном Медведкове, а также в Бибирево и Алтуфьево. Эти территории уже выставлены на продажу и ждут своих инвесторов. Всего же в столице насчитывается больше сотни ЛЭП и электроподстанций открытого типа. Потенциальные застройщики “ЛЭПовых” земель, а вместе с ними и московское правительство, утверждают, что современные технологии позволят полностью изолировать электромагнитное излучение. Для этого планируется использовать коаксиальные кабели, прокладываемые в специальных экранирующих коллекторах.

К сожалению, перенос ЛЭП под землю процедура дорогостоящая (стоящая примерно 1 млн. евро за 1 км прокладываемого кабеля), а поэтому нет никакой гарантии, что девелоперы не будут «экономить». Так что никто не знает – станет ли жилье, возведенное над ЛЭП, безопасным по всем параметрам. Помните, если ваш дом располагается совсем близко от ЛЭП (допустимые санитарные нормы смотри выше), самым правильным решением все-таки явится покупка нового жилья, находящегося в более безопасной зоне!

Современный человек постоянно находится под воздействием огромного количества электромагнитных полей, в очень широком частотном диапазоне — это и электромагнитные поля ЛЭП, и ЭМП создаваемые самой различной офисной и бытовой техникой, и радиоволны мобильных телефонов, находящихся в непосредственной близости от головного мозга говорящего. Подсчитано, что если суммировать электромагнитные поля от всех приборов на Земле, созданных человеком, то их уровень превысит уровень естественного геомагнитного поля Земли в миллионы раз. В наше время установлена связь резонансной частоты с концентрацией ионов в клетке, что объясняет нарушение обменных процессов в организме человека при воздействии излучений.

Исследования воздействия электромагнитных волн проводов ВЛ на мозг и организм человека в целом, доказали, что оно может привести к ряду болезней: радиоволновая, увеличение числа лейкоцитов, изменение частоты сердечного ритма и артериального давления. Иногда в результате воздействия излучения проводов ЛЭП происходят нарушения на клеточном уровне. Отрицательное воздействие электромагнитных полей ЛЭП на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения.

Классификация и маркировка взрывозащищенного электрооборудования по ГОСТ 12.2.020-76*

7.3.31. Взрывозащищенное электрооборудование подразделяется по уровням и видам взрывозащиты, группам и температурным классам.

7.3.32. Установлены следующие уровни взрывозащиты электрооборудования: «электрооборудование повышенной надежности против взрыва», «взрывобезопасное электрооборудование» и «особовзрывобезопасное электрооборудование».

Уровень «электрооборудование повышенной надежности против взрыва» — взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается только в признанном нормальном режиме работы. Знак уровня — 2.

Уровень «взрывобезопасное электрооборудование» — взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты. Знак уровня — 1.

Уровень «особовзрывобезопасное электрооборудование» — взрывозащищенное электрооборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты. Знак уровня — 0.


Похожие записи:


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *